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Abstract
We solve the linearized Boltzmann equation for a degenerate quasi-two-
dimensional electron system confined to a triangular quantum well at a III nitride
heterojunction and interacting only with the polar optical phonons. The method
of solution makes use of a ladder technique, and employs the Fang–Howard
approximation for the description of the confined electrons. The variations of
the effective-momentum relaxation time with the electron energy, and of the
mobility with electron density are presented for a GaN/AlN heterojunction.

The current emphasis on large-band-gap semiconductors, such as III nitrides, has necessitated
the consideration of new regimes of electron transport, particularly in heterostructures. The
crystal growth process often gives rise to a heterojunction in which strong intrinsic electric
fields are created normal to the plane of the heterojunction. These fields are mostly strain-
induced although in wurtzite materials, they can be further enhanced by contributions from
spontaneous polarization [1–3]. The strong electric fields are responsible for the generation of
deep potential wells which are located at the heterojunction and which act to strongly confine
the electrons. As a result, two-dimensional electron densities higher than 1013 cm−2 have been
observed in GaN heterojunctions even in the absence of modulation doping [4–10]. Clearly,
investigations of the transport properties of such a dense electron system must incorporate
the degenerate nature of the electrons. Furthermore, the potential well confining the electrons
under these circumstances should be modelled as having a triangular shape which, significantly,
depends on the density of the confined electrons in the manner of the well-known Fang–Howard
approximation [11].

We seek to determine the solution of the Boltzmann equation in the linear regime and
concentrate on the situation where there is only one electronic subband occupied since it
is in the one-subband case that the quantum effects are most prominent. Our one-subband
triangular quantum well model is illustrated schematically in figure 1 in which we have
chosen the Fermi energy to lie below the polar optical (PO) phonon energy h̄ωLO , a situation
which is readily met in GaN/AlN heterojunctions, even at high densities, because of the large
magnitude of the PO phonon energy (h̄ωLO ≈ 92.8 meV for GaN). It is well established that the
dominant mechanism determining electron mobility in III nitride structures is interaction with
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Figure 1. A schematic drawing of the one-subband model showing the lowest subband in the
triangular quantum well of the heterojunction. The relative positions of the Fermi energy and two
intervals of the optical phonon energy are also shown.

PO phonons. We shall assume that these PO phonons are not modified by the heterojunction
and so take their bulk form [12, 13]. This is, in general, a good approximation for our purpose
since we are interested in processes in which total scattering rates are sought [13]. Our first task
is to calculate a momentum relaxation time, make use of the results to determine the mobility
and seek to exhibit the variation of the mobility with the electron density for typical GaN/AlN
heterojunctions.

The energy spectrum for electrons of effective mass m∗ occupying the lowest subband is
given by εk‖ = h̄2k2

‖/2m
∗ where k‖ is the in-plane wavevector. The probability of transition

from an electron state of in-plane wavevector k‖ within the lowest subband n = 1 to states
k′

‖ within the same subband by emission (+) or absorption (−) of a PO phonon of wavevector
q = (q‖, qz) is given by
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(1)

where N = [exp(h̄ωLO/kBT ) − 1]−1 is the phonon distribution function at temperature T ;
e is the electronic charge, εs and ε∞ are, respectively, the static and high-frequency dielectric
constants of the well material (GaN), while V0 is the large crystal volume. The functionG(qz)
appearing in equation (1) is appropriate for a triangular quantum well and is explicitly given by

G(qz) = b6

(b2 + q2
z )

3
. (2)

Here b is the variational parameter in the Fang–Howard wavefunction [11] and its dependence
on the electron density is determined by the variational principle in the form

b =
(

33e2m∗n0

8h̄2εsε0

)1/3

. (3)
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We choose an average effective well width a associated with the triangular quantum well in
this model as given by a = 6/b, which is twice the average penetration length of the charge in
the GaN region [11]. Finally, in terms ofG(qz), a form factor (needed later while considering
the scattering and transport of electrons) is given by

F(q‖) =
∫ ∞

−∞

|G(qz)|2
q2

‖ + q2
z

dqz = π

8q‖

(
1 +

q‖
b

)−3(
8 +

9q‖
b

+
3q2

‖
b2

)
. (4)

We aim to evaluate the PO-phonon-limited low-field mobility of the degenerate 2D electron
system subject to an electric field E parallel to the plane of the heterojunction. We begin by
considering the linearized Boltzmann equation and seek its solution by employing a ladder
technique which is described at length by Fletcher and Butcher [14] and recently used by
Ridley [15]. The distribution function f (k‖) of the electron system is found by solving the
linearized Boltzmann equation

−
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}

(5)

where f0 is the equilibrium distribution function. The main problem when faced with this
Boltzmann equation (5) is that because of the strong inelastic processes involved in the electron–
PO phonon interaction, one cannot make use of the simplifying relaxation time approximation
[15]. Fortunately, equation (5) can be treated as an algebraic difference equation in which the
unknown energy function depends on three different arguments: ε, ε + h̄ωLO and ε − h̄ωLO .
The equivalent difference equation to be solved involves an effective-momentum relaxation
time τ(ε) and is as follows:

Zε3/2 = A(ε)τ(ε + h̄ωLO) + B(ε)τ(ε) + C(ε)τ(ε − h̄ωLO) (6)

where Z is given by

Z = 8π2
√

2h̄ε0

e2ωLO
√
m∗

(
1

ε∞
− 1

εs

)−1

(7)

and the coefficients A,B and C are functions of ε [16]. For brevity we do not quote the
expressions for these coefficients here and it suffices to point out that they depend on a form
factor F(q‖)which, for the present triangular potential case, is explicitly given by equation (4).

The ladder technique [16] that we follow here involves writing equation (6) as an infinite
set of equations, one for each energy interval. The set of equations is then truncated at the nth
equation, and we are left to solve n equations for (n + 1) unknowns. The additional condition
which is needed to obtain a solution is provided by application of a boundary condition. The
required additional condition is found by making use of the fact that for ε >> h̄ωLO we
may write τ(ε ± h̄ωLO) ≈ τ(ε), and this approximation leads to an analytical solution to
equation (6) which serves as the additional condition in the system of difference equations.

Figures 2(a) and 2(b) show the variation with ε of the momentum relaxation time τ(ε),
evaluated at room temperature T = 300 K for a GaN/AlN single heterojunction with fixed
electron density using the exact ladder method just described. The values of the electron
densities in these figures are as follows: figure 2(a): n0 = 5.0 × 1012 cm−2 and figure 2(b):
n0 = 5.0 × 1013 cm−2. A clear feature of the result in figure 2(a) is that τ(ε) exhibits steps at
all integer multiples of h̄ωLO . The reason behind the steps can be explained as follows. The
first step arises due to the sudden onset of emission when the electron energy becomes equal to
h̄ωLO . The subsequent steps arise at higher multiples of h̄ωLO due to their link to the variations
in the first energy interval 0 < ε < h̄ωLO at each absorption and emission of a phonon.
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Figure 2. Variation with ε of the momentum relaxation time τ(ε), evaluated for a fixed electron
density and temperature using the exact ladder method described in the text. The values of the
electron densities in these figures are as follows: (a): n0 = 5.0 × 1012 cm−2 (εF = 54 meV,
a = 5.8 nm) and (b): n0 = 5.0 × 1013 cm−2 (εF = 569 meV, a = 2.8 nm). The temperature was
fixed at 300 K throughout. The relevant GaN parameters are: h̄ωLO = 92.8 meV; m∗ = 0.21me;
εs = 9.5 and ε∞ = 5.37.

In general, τ decreases with increasing density, with smaller and less sharp steps, and the
trend is such that at higher densities the steps disappear and are replaced by a smooth curve
exhibiting a maximum at the Fermi energy.

The mobility µ in two dimensions is related to τ(ε) as follows [17]:

µ = e

πh̄2n0kBT

∫ ∞

0
τ(ε)f0(ε)[1 − f0(ε)]ε dε. (8)

Once τ(ε) has been evaluated using the ladder technique, evaluations of the mobility follow
straightforwardly from equation (8) using numerical integration. The results are shown in
figure 3 which shows the variations of the mobility with the electron density in a GaN/AlN
heterojunction. The solid curve corresponds to the triangular quantum well and the other three
to square quantum wells with different well widths [16]. It is seen that in the triangular well
case the mobility decreases markedly with increasing density, while for the square wells the
mobility curves are flat, except where each shows a minimum at a characteristic density. The
decrease in mobility with increasing density is sharper for the triangular quantum well because
of the decrease of the average effective well width with increasing density, which corresponds



Evaluations of the low-field mobility in degenerate GaN/AlN heterojunctions 6003

to a decrease in the effective-momentum relaxation time (and hence the mobility) through the
form factor. In general, the mobility is smaller when either the square quantum well width or
the average effective well width for the triangular case becomes smaller. It is also interesting
to note from figure 3 that the triangular and square quantum wells give similar values for the
mobility when the (effective) widths match.
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Figure 3. Variation of the mobility with the two-dimensional electron density in a single GaN/AlN
heterojunction represented by a triangular quantum well (full curve). The other curves correspond
to the variation of the mobility with electron density in the case of square quantum wells with
different widths: 50 nm (dashed curve), 10 nm (dotted curve) and 3 nm (dot–dashed curve). The
temperature is fixed at T = 300 K throughout and the parameters used are the same as those quoted
in the caption of figure 2. The top horizontal axis shows the effective well widths of the triangular
quantum well corresponding to the electron densities shown on the lower horizontal axis.

As to why each mobility curve shown in figure 3 exhibits a pronounced minimum
at a characteristic density, we have checked that this feature coincides with the condition
εF ≈ h̄ωLO . This corresponds to an increase in the emission rate and a decrease in the
momentum relaxation time. For GaN/AlN heterojunctions the drop in mobility in this region
of density should, in principle, be experimentally accessible.

The theory discussed here requires further considerations involving the different regimes
of approximations. In particular, screening effects, expected to come into play at high densities,
must be taken into account, together with coupled-mode effects whenever the plasma frequency
becomes close in magnitude to the PO phonon frequency. Furthermore, the one-subband model
becomes inadequate at the densities for which the Fermi energy matches the energy separation
between the lowest two subbands in the triangular well [18]. These issues will not be discussed
any further here.
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